All the mail mirrored from lore.kernel.org
 help / color / mirror / Atom feed
* [tip: core/rcu] rcu-tasks: Move Tasks RCU to its own file
@ 2020-05-11 20:59 tip-bot2 for Paul E. McKenney
  0 siblings, 0 replies; only message in thread
From: tip-bot2 for Paul E. McKenney @ 2020-05-11 20:59 UTC (permalink / raw
  To: linux-tip-commits; +Cc: Paul E. McKenney, x86, LKML

The following commit has been merged into the core/rcu branch of tip:

Commit-ID:     eacd6f04a1333187dd3e96e5635c0edce0a2e354
Gitweb:        https://git.kernel.org/tip/eacd6f04a1333187dd3e96e5635c0edce0a2e354
Author:        Paul E. McKenney <paulmck@kernel.org>
AuthorDate:    Mon, 02 Mar 2020 11:59:20 -08:00
Committer:     Paul E. McKenney <paulmck@kernel.org>
CommitterDate: Mon, 27 Apr 2020 11:03:50 -07:00

rcu-tasks: Move Tasks RCU to its own file

This code-movement-only commit is in preparation for adding an additional
flavor of Tasks RCU, which relies on workqueues to detect grace periods.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
---
 kernel/rcu/tasks.h  | 370 +++++++++++++++++++++++++++++++++++++++++++-
 kernel/rcu/update.c | 366 +-------------------------------------------
 2 files changed, 372 insertions(+), 364 deletions(-)
 create mode 100644 kernel/rcu/tasks.h

diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h
new file mode 100644
index 0000000..be8d179
--- /dev/null
+++ b/kernel/rcu/tasks.h
@@ -0,0 +1,370 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Task-based RCU implementations.
+ *
+ * Copyright (C) 2020 Paul E. McKenney
+ */
+
+#ifdef CONFIG_TASKS_RCU
+
+/*
+ * Simple variant of RCU whose quiescent states are voluntary context
+ * switch, cond_resched_rcu_qs(), user-space execution, and idle.
+ * As such, grace periods can take one good long time.  There are no
+ * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
+ * because this implementation is intended to get the system into a safe
+ * state for some of the manipulations involved in tracing and the like.
+ * Finally, this implementation does not support high call_rcu_tasks()
+ * rates from multiple CPUs.  If this is required, per-CPU callback lists
+ * will be needed.
+ */
+
+/* Global list of callbacks and associated lock. */
+static struct rcu_head *rcu_tasks_cbs_head;
+static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
+static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
+static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
+
+/* Track exiting tasks in order to allow them to be waited for. */
+DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
+
+/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
+#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
+static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
+module_param(rcu_task_stall_timeout, int, 0644);
+
+static struct task_struct *rcu_tasks_kthread_ptr;
+
+/**
+ * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
+ * @rhp: structure to be used for queueing the RCU updates.
+ * @func: actual callback function to be invoked after the grace period
+ *
+ * The callback function will be invoked some time after a full grace
+ * period elapses, in other words after all currently executing RCU
+ * read-side critical sections have completed. call_rcu_tasks() assumes
+ * that the read-side critical sections end at a voluntary context
+ * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
+ * or transition to usermode execution.  As such, there are no read-side
+ * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
+ * this primitive is intended to determine that all tasks have passed
+ * through a safe state, not so much for data-strcuture synchronization.
+ *
+ * See the description of call_rcu() for more detailed information on
+ * memory ordering guarantees.
+ */
+void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
+{
+	unsigned long flags;
+	bool needwake;
+
+	rhp->next = NULL;
+	rhp->func = func;
+	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
+	needwake = !rcu_tasks_cbs_head;
+	WRITE_ONCE(*rcu_tasks_cbs_tail, rhp);
+	rcu_tasks_cbs_tail = &rhp->next;
+	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
+	/* We can't create the thread unless interrupts are enabled. */
+	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
+		wake_up(&rcu_tasks_cbs_wq);
+}
+EXPORT_SYMBOL_GPL(call_rcu_tasks);
+
+/**
+ * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
+ *
+ * Control will return to the caller some time after a full rcu-tasks
+ * grace period has elapsed, in other words after all currently
+ * executing rcu-tasks read-side critical sections have elapsed.  These
+ * read-side critical sections are delimited by calls to schedule(),
+ * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
+ * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
+ *
+ * This is a very specialized primitive, intended only for a few uses in
+ * tracing and other situations requiring manipulation of function
+ * preambles and profiling hooks.  The synchronize_rcu_tasks() function
+ * is not (yet) intended for heavy use from multiple CPUs.
+ *
+ * Note that this guarantee implies further memory-ordering guarantees.
+ * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
+ * each CPU is guaranteed to have executed a full memory barrier since the
+ * end of its last RCU-tasks read-side critical section whose beginning
+ * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
+ * having an RCU-tasks read-side critical section that extends beyond
+ * the return from synchronize_rcu_tasks() is guaranteed to have executed
+ * a full memory barrier after the beginning of synchronize_rcu_tasks()
+ * and before the beginning of that RCU-tasks read-side critical section.
+ * Note that these guarantees include CPUs that are offline, idle, or
+ * executing in user mode, as well as CPUs that are executing in the kernel.
+ *
+ * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
+ * to its caller on CPU B, then both CPU A and CPU B are guaranteed
+ * to have executed a full memory barrier during the execution of
+ * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
+ * (but again only if the system has more than one CPU).
+ */
+void synchronize_rcu_tasks(void)
+{
+	/* Complain if the scheduler has not started.  */
+	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
+			 "synchronize_rcu_tasks called too soon");
+
+	/* Wait for the grace period. */
+	wait_rcu_gp(call_rcu_tasks);
+}
+EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
+
+/**
+ * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
+ *
+ * Although the current implementation is guaranteed to wait, it is not
+ * obligated to, for example, if there are no pending callbacks.
+ */
+void rcu_barrier_tasks(void)
+{
+	/* There is only one callback queue, so this is easy.  ;-) */
+	synchronize_rcu_tasks();
+}
+EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
+
+/* See if tasks are still holding out, complain if so. */
+static void check_holdout_task(struct task_struct *t,
+			       bool needreport, bool *firstreport)
+{
+	int cpu;
+
+	if (!READ_ONCE(t->rcu_tasks_holdout) ||
+	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
+	    !READ_ONCE(t->on_rq) ||
+	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
+	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
+		WRITE_ONCE(t->rcu_tasks_holdout, false);
+		list_del_init(&t->rcu_tasks_holdout_list);
+		put_task_struct(t);
+		return;
+	}
+	rcu_request_urgent_qs_task(t);
+	if (!needreport)
+		return;
+	if (*firstreport) {
+		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
+		*firstreport = false;
+	}
+	cpu = task_cpu(t);
+	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
+		 t, ".I"[is_idle_task(t)],
+		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
+		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
+		 t->rcu_tasks_idle_cpu, cpu);
+	sched_show_task(t);
+}
+
+/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
+static int __noreturn rcu_tasks_kthread(void *arg)
+{
+	unsigned long flags;
+	struct task_struct *g, *t;
+	unsigned long lastreport;
+	struct rcu_head *list;
+	struct rcu_head *next;
+	LIST_HEAD(rcu_tasks_holdouts);
+	int fract;
+
+	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
+	housekeeping_affine(current, HK_FLAG_RCU);
+
+	/*
+	 * Each pass through the following loop makes one check for
+	 * newly arrived callbacks, and, if there are some, waits for
+	 * one RCU-tasks grace period and then invokes the callbacks.
+	 * This loop is terminated by the system going down.  ;-)
+	 */
+	for (;;) {
+
+		/* Pick up any new callbacks. */
+		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
+		list = rcu_tasks_cbs_head;
+		rcu_tasks_cbs_head = NULL;
+		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
+		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
+
+		/* If there were none, wait a bit and start over. */
+		if (!list) {
+			wait_event_interruptible(rcu_tasks_cbs_wq,
+						 READ_ONCE(rcu_tasks_cbs_head));
+			if (!rcu_tasks_cbs_head) {
+				WARN_ON(signal_pending(current));
+				schedule_timeout_interruptible(HZ/10);
+			}
+			continue;
+		}
+
+		/*
+		 * Wait for all pre-existing t->on_rq and t->nvcsw
+		 * transitions to complete.  Invoking synchronize_rcu()
+		 * suffices because all these transitions occur with
+		 * interrupts disabled.  Without this synchronize_rcu(),
+		 * a read-side critical section that started before the
+		 * grace period might be incorrectly seen as having started
+		 * after the grace period.
+		 *
+		 * This synchronize_rcu() also dispenses with the
+		 * need for a memory barrier on the first store to
+		 * ->rcu_tasks_holdout, as it forces the store to happen
+		 * after the beginning of the grace period.
+		 */
+		synchronize_rcu();
+
+		/*
+		 * There were callbacks, so we need to wait for an
+		 * RCU-tasks grace period.  Start off by scanning
+		 * the task list for tasks that are not already
+		 * voluntarily blocked.  Mark these tasks and make
+		 * a list of them in rcu_tasks_holdouts.
+		 */
+		rcu_read_lock();
+		for_each_process_thread(g, t) {
+			if (t != current && READ_ONCE(t->on_rq) &&
+			    !is_idle_task(t)) {
+				get_task_struct(t);
+				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
+				WRITE_ONCE(t->rcu_tasks_holdout, true);
+				list_add(&t->rcu_tasks_holdout_list,
+					 &rcu_tasks_holdouts);
+			}
+		}
+		rcu_read_unlock();
+
+		/*
+		 * Wait for tasks that are in the process of exiting.
+		 * This does only part of the job, ensuring that all
+		 * tasks that were previously exiting reach the point
+		 * where they have disabled preemption, allowing the
+		 * later synchronize_rcu() to finish the job.
+		 */
+		synchronize_srcu(&tasks_rcu_exit_srcu);
+
+		/*
+		 * Each pass through the following loop scans the list
+		 * of holdout tasks, removing any that are no longer
+		 * holdouts.  When the list is empty, we are done.
+		 */
+		lastreport = jiffies;
+
+		/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
+		fract = 10;
+
+		for (;;) {
+			bool firstreport;
+			bool needreport;
+			int rtst;
+			struct task_struct *t1;
+
+			if (list_empty(&rcu_tasks_holdouts))
+				break;
+
+			/* Slowly back off waiting for holdouts */
+			schedule_timeout_interruptible(HZ/fract);
+
+			if (fract > 1)
+				fract--;
+
+			rtst = READ_ONCE(rcu_task_stall_timeout);
+			needreport = rtst > 0 &&
+				     time_after(jiffies, lastreport + rtst);
+			if (needreport)
+				lastreport = jiffies;
+			firstreport = true;
+			WARN_ON(signal_pending(current));
+			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
+						rcu_tasks_holdout_list) {
+				check_holdout_task(t, needreport, &firstreport);
+				cond_resched();
+			}
+		}
+
+		/*
+		 * Because ->on_rq and ->nvcsw are not guaranteed
+		 * to have a full memory barriers prior to them in the
+		 * schedule() path, memory reordering on other CPUs could
+		 * cause their RCU-tasks read-side critical sections to
+		 * extend past the end of the grace period.  However,
+		 * because these ->nvcsw updates are carried out with
+		 * interrupts disabled, we can use synchronize_rcu()
+		 * to force the needed ordering on all such CPUs.
+		 *
+		 * This synchronize_rcu() also confines all
+		 * ->rcu_tasks_holdout accesses to be within the grace
+		 * period, avoiding the need for memory barriers for
+		 * ->rcu_tasks_holdout accesses.
+		 *
+		 * In addition, this synchronize_rcu() waits for exiting
+		 * tasks to complete their final preempt_disable() region
+		 * of execution, cleaning up after the synchronize_srcu()
+		 * above.
+		 */
+		synchronize_rcu();
+
+		/* Invoke the callbacks. */
+		while (list) {
+			next = list->next;
+			local_bh_disable();
+			list->func(list);
+			local_bh_enable();
+			list = next;
+			cond_resched();
+		}
+		/* Paranoid sleep to keep this from entering a tight loop */
+		schedule_timeout_uninterruptible(HZ/10);
+	}
+}
+
+/* Spawn rcu_tasks_kthread() at core_initcall() time. */
+static int __init rcu_spawn_tasks_kthread(void)
+{
+	struct task_struct *t;
+
+	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
+	if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
+		return 0;
+	smp_mb(); /* Ensure others see full kthread. */
+	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
+	return 0;
+}
+core_initcall(rcu_spawn_tasks_kthread);
+
+/* Do the srcu_read_lock() for the above synchronize_srcu().  */
+void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
+{
+	preempt_disable();
+	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
+	preempt_enable();
+}
+
+/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
+void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
+{
+	preempt_disable();
+	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
+	preempt_enable();
+}
+
+#endif /* #ifdef CONFIG_TASKS_RCU */
+
+#ifndef CONFIG_TINY_RCU
+
+/*
+ * Print any non-default Tasks RCU settings.
+ */
+static void __init rcu_tasks_bootup_oddness(void)
+{
+#ifdef CONFIG_TASKS_RCU
+	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
+		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
+	else
+		pr_info("\tTasks RCU enabled.\n");
+#endif /* #ifdef CONFIG_TASKS_RCU */
+}
+
+#endif /* #ifndef CONFIG_TINY_RCU */
diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c
index 74a698a..c579934 100644
--- a/kernel/rcu/update.c
+++ b/kernel/rcu/update.c
@@ -514,370 +514,6 @@ int rcu_cpu_stall_suppress_at_boot __read_mostly; // !0 = suppress boot stalls.
 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot);
 module_param(rcu_cpu_stall_suppress_at_boot, int, 0444);
 
-#ifdef CONFIG_TASKS_RCU
-
-/*
- * Simple variant of RCU whose quiescent states are voluntary context
- * switch, cond_resched_rcu_qs(), user-space execution, and idle.
- * As such, grace periods can take one good long time.  There are no
- * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
- * because this implementation is intended to get the system into a safe
- * state for some of the manipulations involved in tracing and the like.
- * Finally, this implementation does not support high call_rcu_tasks()
- * rates from multiple CPUs.  If this is required, per-CPU callback lists
- * will be needed.
- */
-
-/* Global list of callbacks and associated lock. */
-static struct rcu_head *rcu_tasks_cbs_head;
-static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
-static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
-static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
-
-/* Track exiting tasks in order to allow them to be waited for. */
-DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
-
-/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
-#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
-static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
-module_param(rcu_task_stall_timeout, int, 0644);
-
-static struct task_struct *rcu_tasks_kthread_ptr;
-
-/**
- * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
- * @rhp: structure to be used for queueing the RCU updates.
- * @func: actual callback function to be invoked after the grace period
- *
- * The callback function will be invoked some time after a full grace
- * period elapses, in other words after all currently executing RCU
- * read-side critical sections have completed. call_rcu_tasks() assumes
- * that the read-side critical sections end at a voluntary context
- * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
- * or transition to usermode execution.  As such, there are no read-side
- * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
- * this primitive is intended to determine that all tasks have passed
- * through a safe state, not so much for data-strcuture synchronization.
- *
- * See the description of call_rcu() for more detailed information on
- * memory ordering guarantees.
- */
-void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
-{
-	unsigned long flags;
-	bool needwake;
-
-	rhp->next = NULL;
-	rhp->func = func;
-	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
-	needwake = !rcu_tasks_cbs_head;
-	WRITE_ONCE(*rcu_tasks_cbs_tail, rhp);
-	rcu_tasks_cbs_tail = &rhp->next;
-	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
-	/* We can't create the thread unless interrupts are enabled. */
-	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
-		wake_up(&rcu_tasks_cbs_wq);
-}
-EXPORT_SYMBOL_GPL(call_rcu_tasks);
-
-/**
- * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
- *
- * Control will return to the caller some time after a full rcu-tasks
- * grace period has elapsed, in other words after all currently
- * executing rcu-tasks read-side critical sections have elapsed.  These
- * read-side critical sections are delimited by calls to schedule(),
- * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
- * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
- *
- * This is a very specialized primitive, intended only for a few uses in
- * tracing and other situations requiring manipulation of function
- * preambles and profiling hooks.  The synchronize_rcu_tasks() function
- * is not (yet) intended for heavy use from multiple CPUs.
- *
- * Note that this guarantee implies further memory-ordering guarantees.
- * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
- * each CPU is guaranteed to have executed a full memory barrier since the
- * end of its last RCU-tasks read-side critical section whose beginning
- * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
- * having an RCU-tasks read-side critical section that extends beyond
- * the return from synchronize_rcu_tasks() is guaranteed to have executed
- * a full memory barrier after the beginning of synchronize_rcu_tasks()
- * and before the beginning of that RCU-tasks read-side critical section.
- * Note that these guarantees include CPUs that are offline, idle, or
- * executing in user mode, as well as CPUs that are executing in the kernel.
- *
- * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
- * to its caller on CPU B, then both CPU A and CPU B are guaranteed
- * to have executed a full memory barrier during the execution of
- * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
- * (but again only if the system has more than one CPU).
- */
-void synchronize_rcu_tasks(void)
-{
-	/* Complain if the scheduler has not started.  */
-	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
-			 "synchronize_rcu_tasks called too soon");
-
-	/* Wait for the grace period. */
-	wait_rcu_gp(call_rcu_tasks);
-}
-EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
-
-/**
- * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
- *
- * Although the current implementation is guaranteed to wait, it is not
- * obligated to, for example, if there are no pending callbacks.
- */
-void rcu_barrier_tasks(void)
-{
-	/* There is only one callback queue, so this is easy.  ;-) */
-	synchronize_rcu_tasks();
-}
-EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
-
-/* See if tasks are still holding out, complain if so. */
-static void check_holdout_task(struct task_struct *t,
-			       bool needreport, bool *firstreport)
-{
-	int cpu;
-
-	if (!READ_ONCE(t->rcu_tasks_holdout) ||
-	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
-	    !READ_ONCE(t->on_rq) ||
-	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
-	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
-		WRITE_ONCE(t->rcu_tasks_holdout, false);
-		list_del_init(&t->rcu_tasks_holdout_list);
-		put_task_struct(t);
-		return;
-	}
-	rcu_request_urgent_qs_task(t);
-	if (!needreport)
-		return;
-	if (*firstreport) {
-		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
-		*firstreport = false;
-	}
-	cpu = task_cpu(t);
-	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
-		 t, ".I"[is_idle_task(t)],
-		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
-		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
-		 t->rcu_tasks_idle_cpu, cpu);
-	sched_show_task(t);
-}
-
-/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
-static int __noreturn rcu_tasks_kthread(void *arg)
-{
-	unsigned long flags;
-	struct task_struct *g, *t;
-	unsigned long lastreport;
-	struct rcu_head *list;
-	struct rcu_head *next;
-	LIST_HEAD(rcu_tasks_holdouts);
-	int fract;
-
-	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
-	housekeeping_affine(current, HK_FLAG_RCU);
-
-	/*
-	 * Each pass through the following loop makes one check for
-	 * newly arrived callbacks, and, if there are some, waits for
-	 * one RCU-tasks grace period and then invokes the callbacks.
-	 * This loop is terminated by the system going down.  ;-)
-	 */
-	for (;;) {
-
-		/* Pick up any new callbacks. */
-		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
-		list = rcu_tasks_cbs_head;
-		rcu_tasks_cbs_head = NULL;
-		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
-		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
-
-		/* If there were none, wait a bit and start over. */
-		if (!list) {
-			wait_event_interruptible(rcu_tasks_cbs_wq,
-						 READ_ONCE(rcu_tasks_cbs_head));
-			if (!rcu_tasks_cbs_head) {
-				WARN_ON(signal_pending(current));
-				schedule_timeout_interruptible(HZ/10);
-			}
-			continue;
-		}
-
-		/*
-		 * Wait for all pre-existing t->on_rq and t->nvcsw
-		 * transitions to complete.  Invoking synchronize_rcu()
-		 * suffices because all these transitions occur with
-		 * interrupts disabled.  Without this synchronize_rcu(),
-		 * a read-side critical section that started before the
-		 * grace period might be incorrectly seen as having started
-		 * after the grace period.
-		 *
-		 * This synchronize_rcu() also dispenses with the
-		 * need for a memory barrier on the first store to
-		 * ->rcu_tasks_holdout, as it forces the store to happen
-		 * after the beginning of the grace period.
-		 */
-		synchronize_rcu();
-
-		/*
-		 * There were callbacks, so we need to wait for an
-		 * RCU-tasks grace period.  Start off by scanning
-		 * the task list for tasks that are not already
-		 * voluntarily blocked.  Mark these tasks and make
-		 * a list of them in rcu_tasks_holdouts.
-		 */
-		rcu_read_lock();
-		for_each_process_thread(g, t) {
-			if (t != current && READ_ONCE(t->on_rq) &&
-			    !is_idle_task(t)) {
-				get_task_struct(t);
-				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
-				WRITE_ONCE(t->rcu_tasks_holdout, true);
-				list_add(&t->rcu_tasks_holdout_list,
-					 &rcu_tasks_holdouts);
-			}
-		}
-		rcu_read_unlock();
-
-		/*
-		 * Wait for tasks that are in the process of exiting.
-		 * This does only part of the job, ensuring that all
-		 * tasks that were previously exiting reach the point
-		 * where they have disabled preemption, allowing the
-		 * later synchronize_rcu() to finish the job.
-		 */
-		synchronize_srcu(&tasks_rcu_exit_srcu);
-
-		/*
-		 * Each pass through the following loop scans the list
-		 * of holdout tasks, removing any that are no longer
-		 * holdouts.  When the list is empty, we are done.
-		 */
-		lastreport = jiffies;
-
-		/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
-		fract = 10;
-
-		for (;;) {
-			bool firstreport;
-			bool needreport;
-			int rtst;
-			struct task_struct *t1;
-
-			if (list_empty(&rcu_tasks_holdouts))
-				break;
-
-			/* Slowly back off waiting for holdouts */
-			schedule_timeout_interruptible(HZ/fract);
-
-			if (fract > 1)
-				fract--;
-
-			rtst = READ_ONCE(rcu_task_stall_timeout);
-			needreport = rtst > 0 &&
-				     time_after(jiffies, lastreport + rtst);
-			if (needreport)
-				lastreport = jiffies;
-			firstreport = true;
-			WARN_ON(signal_pending(current));
-			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
-						rcu_tasks_holdout_list) {
-				check_holdout_task(t, needreport, &firstreport);
-				cond_resched();
-			}
-		}
-
-		/*
-		 * Because ->on_rq and ->nvcsw are not guaranteed
-		 * to have a full memory barriers prior to them in the
-		 * schedule() path, memory reordering on other CPUs could
-		 * cause their RCU-tasks read-side critical sections to
-		 * extend past the end of the grace period.  However,
-		 * because these ->nvcsw updates are carried out with
-		 * interrupts disabled, we can use synchronize_rcu()
-		 * to force the needed ordering on all such CPUs.
-		 *
-		 * This synchronize_rcu() also confines all
-		 * ->rcu_tasks_holdout accesses to be within the grace
-		 * period, avoiding the need for memory barriers for
-		 * ->rcu_tasks_holdout accesses.
-		 *
-		 * In addition, this synchronize_rcu() waits for exiting
-		 * tasks to complete their final preempt_disable() region
-		 * of execution, cleaning up after the synchronize_srcu()
-		 * above.
-		 */
-		synchronize_rcu();
-
-		/* Invoke the callbacks. */
-		while (list) {
-			next = list->next;
-			local_bh_disable();
-			list->func(list);
-			local_bh_enable();
-			list = next;
-			cond_resched();
-		}
-		/* Paranoid sleep to keep this from entering a tight loop */
-		schedule_timeout_uninterruptible(HZ/10);
-	}
-}
-
-/* Spawn rcu_tasks_kthread() at core_initcall() time. */
-static int __init rcu_spawn_tasks_kthread(void)
-{
-	struct task_struct *t;
-
-	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
-	if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
-		return 0;
-	smp_mb(); /* Ensure others see full kthread. */
-	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
-	return 0;
-}
-core_initcall(rcu_spawn_tasks_kthread);
-
-/* Do the srcu_read_lock() for the above synchronize_srcu().  */
-void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
-{
-	preempt_disable();
-	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
-	preempt_enable();
-}
-
-/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
-void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
-{
-	preempt_disable();
-	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
-	preempt_enable();
-}
-
-#endif /* #ifdef CONFIG_TASKS_RCU */
-
-#ifndef CONFIG_TINY_RCU
-
-/*
- * Print any non-default Tasks RCU settings.
- */
-static void __init rcu_tasks_bootup_oddness(void)
-{
-#ifdef CONFIG_TASKS_RCU
-	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
-		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
-	else
-		pr_info("\tTasks RCU enabled.\n");
-#endif /* #ifdef CONFIG_TASKS_RCU */
-}
-
-#endif /* #ifndef CONFIG_TINY_RCU */
-
 #ifdef CONFIG_PROVE_RCU
 
 /*
@@ -948,6 +584,8 @@ late_initcall(rcu_verify_early_boot_tests);
 void rcu_early_boot_tests(void) {}
 #endif /* CONFIG_PROVE_RCU */
 
+#include "tasks.h"
+
 #ifndef CONFIG_TINY_RCU
 
 /*

^ permalink raw reply related	[flat|nested] only message in thread

only message in thread, other threads:[~2020-05-11 21:03 UTC | newest]

Thread overview: (only message) (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2020-05-11 20:59 [tip: core/rcu] rcu-tasks: Move Tasks RCU to its own file tip-bot2 for Paul E. McKenney

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.