1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
| | /*
* Embedded Linux library
* Copyright (C) 2018 Intel Corporation
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#define _GNU_SOURCE
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include "ecc.h"
#include "ecc-private.h"
#include "random.h"
#include "useful.h"
#include "private.h"
#include "missing.h"
/*
* RFC 5114 - Section 2.6 256-bit Random ECP Group
*/
#define P256_CURVE_P { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
0x0000000000000000ull, 0xFFFFFFFF00000001ull }
#define P256_CURVE_GX { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \
0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }
#define P256_CURVE_GY { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \
0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull }
#define P256_CURVE_N { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \
0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }
#define P256_CURVE_B { 0x3BCE3C3E27D2604Bull, 0x651D06B0CC53B0F6ull, \
0xB3EBBD55769886BCull, 0x5AC635D8AA3A93E7ull }
static const struct l_ecc_curve p256 = {
.name = "secp256r1",
.ike_group = 19,
.tls_group = 23,
.ndigits = 4,
.g = {
.x = P256_CURVE_GX,
.y = P256_CURVE_GY,
.curve = &p256
},
.p = P256_CURVE_P,
.n = P256_CURVE_N,
.b = P256_CURVE_B,
.z = -10,
};
/*
* RFC 5114 - Section 2.7 384-bit Random ECP Group
*/
#define P384_CURVE_P { 0x00000000FFFFFFFFull, 0xFFFFFFFF00000000ull, \
0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull, \
0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }
#define P384_CURVE_GX { 0x3A545E3872760AB7ull, 0x5502F25DBF55296Cull, \
0x59F741E082542A38ull, 0x6E1D3B628BA79B98ull, \
0x8EB1C71EF320AD74ull, 0xAA87CA22BE8B0537ull }
#define P384_CURVE_GY { 0x7A431D7C90EA0E5Full, 0x0A60B1CE1D7E819Dull, \
0xE9DA3113B5F0B8C0ull, 0xF8F41DBD289A147Cull, \
0x5D9E98BF9292DC29ull, 0x3617DE4A96262C6Full }
#define P384_CURVE_N { 0xECEC196ACCC52973ull, 0x581A0DB248B0A77Aull, \
0xC7634D81F4372DDFull, 0xFFFFFFFFFFFFFFFFull, \
0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }
#define P384_CURVE_B { 0x2A85C8EDD3EC2AEFull, 0xC656398D8A2ED19Dull, \
0x0314088F5013875Aull, 0x181D9C6EFE814112ull, \
0x988E056BE3F82D19ull, 0xB3312FA7E23EE7E4ull }
static const struct l_ecc_curve p384 = {
.name = "secp384r1",
.ike_group = 20,
.tls_group = 24,
.ndigits = 6,
.g = {
.x = P384_CURVE_GX,
.y = P384_CURVE_GY,
.curve = &p384
},
.p = P384_CURVE_P,
.n = P384_CURVE_N,
.b = P384_CURVE_B,
.z = -12,
};
static const struct l_ecc_curve *curves[] = {
&p384,
&p256,
};
/* Returns supported IKE groups, sorted by the highest effective key size */
LIB_EXPORT const unsigned int *l_ecc_supported_ike_groups(void)
{
static unsigned int supported_ike_groups[L_ARRAY_SIZE(curves) + 1];
static bool ike_first = true;
if (ike_first) {
unsigned int i;
for (i = 0; i < L_ARRAY_SIZE(curves); i++)
supported_ike_groups[i] = curves[i]->ike_group;
supported_ike_groups[i] = 0;
ike_first = false;
}
return supported_ike_groups;
}
/* Returns supported TLS groups, sorted by the highest effective key size */
LIB_EXPORT const unsigned int *l_ecc_supported_tls_groups(void)
{
static unsigned int supported_tls_groups[L_ARRAY_SIZE(curves) + 1];
static bool tls_first = true;
if (tls_first) {
unsigned int i;
for (i = 0; i < L_ARRAY_SIZE(curves); i++)
supported_tls_groups[i] = curves[i]->tls_group;
supported_tls_groups[i] = 0;
tls_first = false;
}
return supported_tls_groups;
}
LIB_EXPORT const struct l_ecc_curve *l_ecc_curve_from_name(const char *name)
{
int i;
if (unlikely(!name))
return NULL;
for (i = 0; curves[i]; i++) {
if (!strcmp(curves[i]->name, name))
return curves[i];
}
return NULL;
}
LIB_EXPORT const struct l_ecc_curve *l_ecc_curve_from_ike_group(
unsigned int group)
{
unsigned int i;
for (i = 0; i < L_ARRAY_SIZE(curves); i++) {
if (curves[i]->ike_group == group)
return curves[i];
}
return NULL;
}
LIB_EXPORT const struct l_ecc_curve *l_ecc_curve_from_tls_group(
unsigned int group)
{
unsigned int i;
for (i = 0; i < L_ARRAY_SIZE(curves); i++) {
if (curves[i]->tls_group == group)
return curves[i];
}
return NULL;
}
LIB_EXPORT const char *l_ecc_curve_get_name(const struct l_ecc_curve *curve)
{
if (unlikely(!curve))
return NULL;
return curve->name;
}
LIB_EXPORT unsigned int l_ecc_curve_get_ike_group(
const struct l_ecc_curve *curve)
{
if (unlikely(!curve))
return 0;
return curve->ike_group;
}
LIB_EXPORT unsigned int l_ecc_curve_get_tls_group(
const struct l_ecc_curve *curve)
{
if (unlikely(!curve))
return 0;
return curve->tls_group;
}
LIB_EXPORT struct l_ecc_scalar *l_ecc_curve_get_order(
const struct l_ecc_curve *curve)
{
return _ecc_constant_new(curve, curve->n, curve->ndigits * 8);
}
LIB_EXPORT struct l_ecc_scalar *l_ecc_curve_get_prime(
const struct l_ecc_curve *curve)
{
if (unlikely(!curve))
return NULL;
return _ecc_constant_new(curve, curve->p, curve->ndigits * 8);
}
LIB_EXPORT size_t l_ecc_curve_get_scalar_bytes(const struct l_ecc_curve *curve)
{
if (unlikely(!curve))
return 0;
return curve->ndigits * 8;
}
static bool ecc_valid_point(struct l_ecc_point *point)
{
const struct l_ecc_curve *curve = point->curve;
uint64_t tmp1[L_ECC_MAX_DIGITS];
uint64_t tmp2[L_ECC_MAX_DIGITS];
uint64_t _3[L_ECC_MAX_DIGITS] = { 3 }; /* -a = 3 */
unsigned int ndigits = curve->ndigits;
/* The point at infinity is invalid. */
if (_ecc_point_is_zero(point))
return false;
/* x and y must be smaller than p. */
if (_vli_cmp(curve->p, point->x, ndigits) != 1 ||
_vli_cmp(curve->p, point->y, ndigits) != 1)
return false;
/* Computes result = y^2. */
_vli_mod_square_fast(tmp1, point->y, curve->p, ndigits);
/* Computes result = x^3 + ax + b. result must not overlap x. */
/* r = x^2 */
_vli_mod_square_fast(tmp2, point->x, curve->p, ndigits);
/* r = x^2 - 3 */
_vli_mod_sub(tmp2, tmp2, _3, curve->p, ndigits);
/* r = x^3 - 3x */
_vli_mod_mult_fast(tmp2, tmp2, point->x, curve->p, ndigits);
/* r = x^3 - 3x + b */
_vli_mod_add(tmp2, tmp2, curve->b, curve->p, ndigits);
/* Make sure that y^2 == x^3 + ax + b */
return (_vli_cmp(tmp1, tmp2, ndigits) == 0);
}
void _ecc_be2native(uint64_t *dest, const uint64_t *bytes,
unsigned int ndigits)
{
unsigned int i;
uint64_t tmp[2 * L_ECC_MAX_DIGITS];
for (i = 0; i < ndigits; i++)
tmp[ndigits - 1 - i] = l_get_be64(&bytes[i]);
memcpy(dest, tmp, ndigits * 8);
}
void _ecc_native2be(uint64_t *dest, const uint64_t *native,
unsigned int ndigits)
{
unsigned int i;
uint64_t tmp[L_ECC_MAX_DIGITS];
for (i = 0; i < ndigits; i++)
l_put_be64(native[ndigits - 1 - i], &tmp[i]);
memcpy(dest, tmp, ndigits * 8);
}
static void ecc_compute_y_sqr(const struct l_ecc_curve *curve,
uint64_t *y_sqr, const uint64_t *x)
{
uint64_t sum[L_ECC_MAX_DIGITS] = { 0 };
uint64_t tmp[L_ECC_MAX_DIGITS] = { 0 };
uint64_t _3[L_ECC_MAX_DIGITS] = { 3ull }; /* -a = 3 */
/* x^3 */
_vli_mod_square_fast(sum, x, curve->p, curve->ndigits);
_vli_mod_mult_fast(sum, sum, x, curve->p, curve->ndigits);
/* x^3 - ax */
_vli_mod_mult_fast(tmp, _3, x, curve->p, curve->ndigits);
_vli_mod_sub(sum, sum, tmp, curve->p, curve->ndigits);
/* x^3 - ax + b */
_vli_mod_add(sum, sum, curve->b, curve->p, curve->ndigits);
memcpy(y_sqr, sum, curve->ndigits * 8);
}
/*
* Compute sqrt(y^2)
* Since our prime p satisfies p = 3 (mod 4), we can say:
*
* y = (y^2)^((p + 1) / 4)
*
* This avoids the need for a square root function.
*/
static void ecc_compute_sqrt(const struct l_ecc_curve *curve,
uint64_t *y, const uint64_t *y_sqr)
{
uint64_t expo[L_ECC_MAX_DIGITS];
uint64_t one[L_ECC_MAX_DIGITS] = { 1ull };
memcpy(expo, curve->p, curve->ndigits * 8);
/* (p + 1) / 4 == (p >> 2) + 1 */
_vli_rshift1(expo, curve->ndigits);
_vli_rshift1(expo, curve->ndigits);
_vli_mod_add(expo, expo, one, curve->p, curve->ndigits);
/* sum ^ ((p + 1) / 4) */
_vli_mod_exp(y, y_sqr, expo, curve->p, curve->ndigits);
}
bool _ecc_compute_y(const struct l_ecc_curve *curve, uint64_t *y,
const uint64_t *x)
{
uint64_t sum[L_ECC_MAX_DIGITS] = { 0 };
uint64_t check[L_ECC_MAX_DIGITS] = { 0 };
/* y = sqrt(x^3 + ax + b) (mod p) */
ecc_compute_y_sqr(curve, sum, x);
ecc_compute_sqrt(curve, y, sum);
/* square y to ensure we have a correct value */
_vli_mod_mult_fast(check, y, y, curve->p, curve->ndigits);
if (_vli_cmp(check, sum, curve->ndigits) != 0)
return false;
return true;
}
/*
* IETF - Compact representation of an elliptic curve point:
* https://tools.ietf.org/id/draft-jivsov-ecc-compact-00.xml
*
* "min(y,p-y) can be calculated with the help of the pre-calculated value
* p2=(p-1)/2. min(y,p-y) is y if y<p2 and p-y otherwise."
*/
void _ecc_calculate_p2(const struct l_ecc_curve *curve, uint64_t *p2)
{
uint64_t one[L_ECC_MAX_DIGITS] = { 1 };
_vli_mod_sub(p2, curve->p, one, curve->p, curve->ndigits);
_vli_rshift1(p2, curve->ndigits);
}
/*
* IETF draft-jivsov-ecc-compact-00 Section 4.1
* Encoding and decoding of an elliptic curve point
* ...
* Decoding:
* Given the compact representation of Q, return canonical representation
* of Q=(x,y) as follows:
* 1. y' = sqrt( x^3 + a*x + b ), where y'>0
* 2. y = min(y',p-y')
* 3. Q=(x,y) is the canonical representation of the point
*/
static bool decode_point(const struct l_ecc_curve *curve, uint64_t *x,
struct l_ecc_point *point)
{
uint64_t y_min[L_ECC_MAX_DIGITS];
uint64_t p2[L_ECC_MAX_DIGITS];
if (!_ecc_compute_y(curve, y_min, (uint64_t *)x))
return false;
_ecc_calculate_p2(curve, p2);
if (_vli_cmp(y_min, p2, curve->ndigits) >= 0)
_vli_mod_sub(point->y, curve->p, y_min,
curve->p, curve->ndigits);
else
memcpy(point->y, y_min, curve->ndigits * 8);
memcpy(point->x, x, curve->ndigits * 8);
return true;
}
/* (rx, ry) = (px, py) + (qx, qy) */
void _ecc_point_add(struct l_ecc_point *ret, const struct l_ecc_point *p,
const struct l_ecc_point *q,
const uint64_t *curve_prime)
{
/*
* s = (py - qy)/(px - qx)
*
* rx = s^2 - px - qx
* ry = s(px - rx) - py
*/
uint64_t s[L_ECC_MAX_DIGITS];
uint64_t kp1[L_ECC_MAX_DIGITS];
uint64_t kp2[L_ECC_MAX_DIGITS];
uint64_t resx[L_ECC_MAX_DIGITS];
uint64_t resy[L_ECC_MAX_DIGITS];
unsigned int ndigits = p->curve->ndigits;
memset(s, 0, ndigits * 8);
/* kp1 = py - qy */
_vli_mod_sub(kp1, q->y, p->y, curve_prime, ndigits);
/* kp2 = px - qx */
_vli_mod_sub(kp2, q->x, p->x, curve_prime, ndigits);
/* s = kp1/kp2 */
_vli_mod_inv(kp2, kp2, curve_prime, ndigits);
_vli_mod_mult_fast(s, kp1, kp2, curve_prime, ndigits);
/* rx = s^2 - px - qx */
_vli_mod_mult_fast(kp1, s, s, curve_prime, ndigits);
_vli_mod_sub(kp1, kp1, p->x, curve_prime, ndigits);
_vli_mod_sub(resx, kp1, q->x, curve_prime, ndigits);
/* ry = s(px - rx) - py */
_vli_mod_sub(kp1, p->x, resx, curve_prime, ndigits);
_vli_mod_mult_fast(kp1, s, kp1, curve_prime, ndigits);
_vli_mod_sub(resy, kp1, p->y, curve_prime, ndigits);
memcpy(ret->x, resx, ndigits * 8);
memcpy(ret->y, resy, ndigits * 8);
}
/* result = (base ^ exp) % p */
void _vli_mod_exp(uint64_t *result, const uint64_t *base, const uint64_t *exp,
const uint64_t *mod, unsigned int ndigits)
{
unsigned int i;
int bit;
uint64_t n[L_ECC_MAX_DIGITS];
uint64_t r[L_ECC_MAX_DIGITS] = { 1 };
memcpy(n, base, ndigits * 8);
for (i = 0; i < ndigits; i++) {
for (bit = 0; bit < 64; bit++) {
uint64_t tmp[L_ECC_MAX_DIGITS];
if (exp[i] & (1ull << bit)) {
_vli_mod_mult_fast(tmp, r, n, mod, ndigits);
memcpy(r, tmp, ndigits * 8);
}
_vli_mod_mult_fast(tmp, n, n, mod, ndigits);
memcpy(n, tmp, ndigits * 8);
}
}
memcpy(result, r, ndigits * 8);
}
__attribute__((noinline)) static int vli_equal(const uint64_t *a,
const uint64_t *b,
unsigned int ndigits)
{
uint64_t diff = 0;
unsigned int i;
for (i = 0; i < ndigits; i++) {
diff |= a[i] ^ b[i];
__asm__ ("" : "=r" (diff) : "0" (diff));
}
return (~diff & (diff - 1)) >> 63;
}
int _vli_legendre(uint64_t *val, const uint64_t *p, unsigned int ndigits)
{
uint64_t tmp[L_ECC_MAX_DIGITS];
uint64_t exp[L_ECC_MAX_DIGITS];
uint64_t _1[L_ECC_MAX_DIGITS] = { 1ull };
uint64_t _0[L_ECC_MAX_DIGITS] = { 0 };
/* check that val ^ ((p - 1) / 2) == [1, 0 or -1] */
_vli_sub(exp, p, _1, ndigits);
_vli_rshift1(exp, ndigits);
_vli_mod_exp(tmp, val, exp, p, ndigits);
if (_vli_cmp(tmp, _1, ndigits) == 0)
return 1;
if (_vli_cmp(tmp, _0, ndigits) == 0)
return 0;
return -1;
}
bool _vli_is_zero_or_one(const uint64_t *vli, unsigned int ndigits)
{
uint64_t _1[L_ECC_MAX_DIGITS] = { 1ull };
int ret;
ret = secure_select(vli_equal(vli, _1, ndigits), true, false);
ret = secure_select(l_secure_memeq(vli, ndigits * 8, 0), true, ret);
return ret;
}
LIB_EXPORT struct l_ecc_point *l_ecc_point_new(const struct l_ecc_curve *curve)
{
struct l_ecc_point *p = l_new(struct l_ecc_point, 1);
p->curve = curve;
return p;
}
LIB_EXPORT struct l_ecc_point *l_ecc_point_from_data(
const struct l_ecc_curve *curve,
enum l_ecc_point_type type,
const void *data, size_t len)
{
struct l_ecc_point *p;
size_t bytes = curve->ndigits * 8;
uint64_t tmp[L_ECC_MAX_DIGITS];
bool sub;
if (!data)
return NULL;
/* Verify the data length matches a full point or X coordinate */
if (type == L_ECC_POINT_TYPE_FULL) {
if (len != bytes * 2)
return NULL;
} else if (len != bytes)
return NULL;
p = l_ecc_point_new(curve);
_ecc_be2native(p->x, (void *) data, curve->ndigits);
switch (type) {
case L_ECC_POINT_TYPE_COMPLIANT:
if (!decode_point(curve, p->x, p))
goto failed;
break;
case L_ECC_POINT_TYPE_COMPRESSED_BIT0:
case L_ECC_POINT_TYPE_COMPRESSED_BIT1:
if (!_ecc_compute_y(curve, p->y, p->x))
goto failed;
/*
* This is determining whether or not to subtract the Y
* coordinate from P. According to ANSI X9.62 an even Y should
* be prefixed with 02 (BIT0) and an odd Y should be prefixed
* with 03 (BIT1). If this is not the case, subtract Y from P.
*
* ANSI X9.62
* 4.3.6 Point-to-Octet-String Conversion
*
* 2. If the compressed form is used, then do the following:
* 2.1. Compute the bit ~Yp . (See Section 4.2.)
* 2.2. Assign the value 02 to the single octet PC if ~Yp
* is 0, or the value 03 if ~Yp is 1.
* 2.3. The result is the octet string PO = PC || X
*/
sub = secure_select(type == L_ECC_POINT_TYPE_COMPRESSED_BIT0,
p->y[0] & 1, !(p->y[0] & 1));
_vli_mod_sub(tmp, curve->p, p->y, curve->p, curve->ndigits);
l_secure_select(sub, tmp, p->y, p->y, curve->ndigits * 8);
break;
case L_ECC_POINT_TYPE_FULL:
_ecc_be2native(p->y, (void *) data + bytes, curve->ndigits);
if (!ecc_valid_point(p))
goto failed;
break;
}
return p;
failed:
l_free(p);
return NULL;
}
LIB_EXPORT struct l_ecc_point *l_ecc_point_from_sswu(
const struct l_ecc_scalar *u)
{
const struct l_ecc_curve *curve = u->curve;
unsigned int ndigits = curve->ndigits;
uint64_t z[L_ECC_MAX_DIGITS] = { abs(curve->z) };
uint64_t _3[L_ECC_MAX_DIGITS] = { 3ull }; /* -a = 3 */
uint64_t u2z[L_ECC_MAX_DIGITS];
uint64_t t1[L_ECC_MAX_DIGITS];
uint64_t t2[L_ECC_MAX_DIGITS];
uint64_t m[L_ECC_MAX_DIGITS];
uint64_t t[L_ECC_MAX_DIGITS];
uint64_t x1l[L_ECC_MAX_DIGITS];
uint64_t x1r[L_ECC_MAX_DIGITS];
uint64_t x1[L_ECC_MAX_DIGITS];
uint64_t gx1[L_ECC_MAX_DIGITS];
uint64_t x2[L_ECC_MAX_DIGITS];
uint64_t gx2[L_ECC_MAX_DIGITS];
/* reuse m/t/x1l,x1r, they are unused by the time x/v/y/p-y is needed */
uint64_t *x = m;
uint64_t *v = t;
uint64_t *yl = x1l;
uint64_t *yr = x1r;
bool l;
struct l_ecc_point *P;
/*
* m = (z^2 * u^4 + z * u^2) modulo p
* u2z = u^2 * z
* t2 = u2z^2
* m = t2 - u2z since for all our curves z is negative
*/
_vli_mod_square_fast(u2z, u->c, curve->p, ndigits);
_vli_mod_mult_fast(u2z, u2z, z, curve->p, ndigits);
_vli_mod_square_fast(t2, u2z, curve->p, ndigits);
_vli_mod_sub(m, t2, u2z, curve->p, ndigits);
/*
* l = CEQ(m, 0)
* t = inv0(m) where inv0(x) is calculated as x^(p-2) modulo p
*/
l = l_secure_memeq(m, sizeof(m), 0);
memset(t2, 0, sizeof(t2));
t2[0] = 2ull;
_vli_mod_sub(t1, curve->p, t2, curve->p, ndigits);
_vli_mod_exp(t, m, t1, curve->p, ndigits);
/* Calculate: b / z*a, both z and a are negative */
_vli_mod_mult_fast(t1, z, _3, curve->p, ndigits);
_vli_mod_inv(t1, t1, curve->p, ndigits);
_vli_mod_mult_fast(x1l, curve->b, t1, curve->p, ndigits);
/* t = 1 + t */
memset(t2, 0, sizeof(t2));
t2[0] = 1ull;
_vli_mod_add(t, t, t2, curve->p, ndigits);
/* t1 = 1 / a */
_vli_mod_inv(t1, _3, curve->p, ndigits);
/* x1r = b * t1 * t */
_vli_mod_mult_fast(x1r, curve->b, t1, curve->p, ndigits);
_vli_mod_mult_fast(x1r, x1r, t, curve->p, ndigits);
/* x1 = CSEL(l, (b / (z*a) modulo p), ((-b/a) * (1 + t)) modulo p) */
l_secure_select(l, x1l, x1r, x1, ndigits * 8);
/* gx1 = (x1^3 + a*x1 + b) modulo p */
ecc_compute_y_sqr(curve, gx1, x1);
/* x2 = (z*u^2*x1) modulo p, z is negative, hence the second op */
_vli_mod_mult_fast(x2, u2z, x1, curve->p, ndigits);
_vli_mod_sub(x2, curve->p, x2, curve->p, ndigits);
/* gx2 = (x2^3 + a*x2 + b) modulo p */
ecc_compute_y_sqr(curve, gx2, x2);
/*
* l = gx1 is a quadratic residue modulo p
* x is a quadratic residue if x^((p-1)/2) modulo p is zero or one
*/
_vli_mod_sub(t1, curve->p, t2, curve->p, ndigits);
_vli_rshift1(t1, ndigits);
_vli_mod_exp(t2, gx1, t1, curve->p, ndigits);
l = _vli_is_zero_or_one(t2, ndigits);
/* v = CSEL(l, gx1, gx2) */
l_secure_select(l, gx1, gx2, v, ndigits * 8);
/* x = CSEL(l, x1, x2) */
l_secure_select(l, x1, x2, x, ndigits * 8);
/* y = sqrt(v) */
ecc_compute_sqrt(curve, yl, v);
/* l = CEQ(LSB(u), LSB(y)) */
l = !((u->c[0] & 1ull) ^ (yl[0] & 1ull));
/* p - y */
_vli_mod_sub(yr, curve->p, yl, curve->p, ndigits);
/* P = CSEL(l, (x,y), (x, p-y)) */
P = l_ecc_point_new(curve);
memcpy(P->x, x, ndigits * 8);
l_secure_select(l, yl, yr, P->y, ndigits * 8);
return P;
}
LIB_EXPORT struct l_ecc_point *l_ecc_point_clone(const struct l_ecc_point *p)
{
if (!p)
return NULL;
return l_memdup(p, sizeof(*p));
}
LIB_EXPORT const struct l_ecc_curve *l_ecc_point_get_curve(
const struct l_ecc_point *p)
{
if (!p)
return NULL;
return p->curve;
}
LIB_EXPORT ssize_t l_ecc_point_get_x(const struct l_ecc_point *p, void *x,
size_t xlen)
{
if (xlen < p->curve->ndigits * 8)
return -EMSGSIZE;
_ecc_native2be(x, p->x, p->curve->ndigits);
return p->curve->ndigits * 8;
}
LIB_EXPORT ssize_t l_ecc_point_get_y(const struct l_ecc_point *p, void *y,
size_t ylen)
{
if (ylen < p->curve->ndigits * 8)
return -EMSGSIZE;
_ecc_native2be(y, p->y, p->curve->ndigits);
return p->curve->ndigits * 8;
}
LIB_EXPORT bool l_ecc_point_y_isodd(const struct l_ecc_point *p)
{
return p->y[0] & 1;
}
LIB_EXPORT ssize_t l_ecc_point_get_data(const struct l_ecc_point *p, void *buf,
size_t len)
{
if (len < (p->curve->ndigits * 8) * 2)
return -EMSGSIZE;
_ecc_native2be(buf, (uint64_t *) p->x, p->curve->ndigits);
_ecc_native2be(buf + (p->curve->ndigits * 8), (uint64_t *) p->y,
p->curve->ndigits);
return (p->curve->ndigits * 8) * 2;
}
LIB_EXPORT void l_ecc_point_free(struct l_ecc_point *p)
{
if (unlikely(!p))
return;
explicit_bzero(p->x, p->curve->ndigits * 8);
explicit_bzero(p->y, p->curve->ndigits * 8);
l_free(p);
}
struct l_ecc_scalar *_ecc_constant_new(const struct l_ecc_curve *curve,
const void *buf, size_t len)
{
struct l_ecc_scalar *c;
if (unlikely(!curve))
return NULL;
if (buf && len != curve->ndigits * 8)
return NULL;
c = l_new(struct l_ecc_scalar, 1);
c->curve = curve;
if (buf)
memcpy(c->c, buf, len);
return c;
}
LIB_EXPORT struct l_ecc_scalar *l_ecc_scalar_new(
const struct l_ecc_curve *curve,
const void *buf, size_t len)
{
struct l_ecc_scalar *c;
c = _ecc_constant_new(curve, NULL, 0);
if (!c)
return NULL;
if (!buf)
return c;
_ecc_be2native(c->c, buf, curve->ndigits);
if (!_vli_is_zero_or_one(c->c, curve->ndigits) &&
secure_memcmp_64(curve->n, c->c, curve->ndigits) > 0)
return c;
l_ecc_scalar_free(c);
return NULL;
}
/*
* Build a scalar = value modulo p where p is the prime number for a given
* curve. bytes can contain a numer with up to 2x number of digits as the
* curve. This is used in Hash to Curve calculations.
*/
LIB_EXPORT struct l_ecc_scalar *l_ecc_scalar_new_modp(
const struct l_ecc_curve *curve,
const void *bytes, size_t len)
{
struct l_ecc_scalar *c;
uint64_t tmp[2 * L_ECC_MAX_DIGITS];
unsigned int ndigits = len / 8;
if (!bytes)
return NULL;
if (len % 8)
return NULL;
if (ndigits > curve->ndigits * 2)
return NULL;
c = _ecc_constant_new(curve, NULL, 0);
if (!c)
return NULL;
memset(tmp, 0, sizeof(tmp));
_ecc_be2native(tmp, bytes, ndigits);
_vli_mmod_fast(c->c, tmp, curve->p, curve->ndigits);
if (!_vli_is_zero_or_one(c->c, curve->ndigits) &&
secure_memcmp_64(curve->n, c->c, curve->ndigits) > 0)
return c;
l_ecc_scalar_free(c);
return NULL;
}
/*
* Takes a buffer of the same size as the curve and scales it to a range
* 1..n using value = (value mod (n - 1)) + 1. For the curves we support
* this can be done using a subtraction operation due to the size of n
*/
LIB_EXPORT struct l_ecc_scalar *l_ecc_scalar_new_reduced_1_to_n(
const struct l_ecc_curve *curve,
const void *buf, size_t len)
{
uint64_t _1[L_ECC_MAX_DIGITS] = { 1ull };
uint64_t tmp[L_ECC_MAX_DIGITS];
struct l_ecc_scalar *c;
if (!buf)
return NULL;
if (len != curve->ndigits * 8)
return NULL;
c = _ecc_constant_new(curve, NULL, 0);
if (!c)
return NULL;
_vli_sub(tmp, curve->n, _1, curve->ndigits);
_ecc_be2native(c->c, buf, curve->ndigits);
if (_vli_cmp(c->c, tmp, curve->ndigits) >= 0)
_vli_sub(c->c, c->c, tmp, curve->ndigits);
_vli_add(c->c, c->c, _1, curve->ndigits);
return c;
}
LIB_EXPORT struct l_ecc_scalar *l_ecc_scalar_new_random(
const struct l_ecc_curve *curve)
{
uint64_t r[L_ECC_MAX_DIGITS];
l_getrandom(r, curve->ndigits * 8);
while (_vli_cmp(r, curve->p, curve->ndigits) > 0 ||
_vli_cmp(r, curve->n, curve->ndigits) > 0 ||
_vli_is_zero_or_one(r, curve->ndigits))
l_getrandom(r, curve->ndigits * 8);
return _ecc_constant_new(curve, r, curve->ndigits * 8);
}
LIB_EXPORT ssize_t l_ecc_scalar_get_data(const struct l_ecc_scalar *c,
void *buf, size_t len)
{
if (len < c->curve->ndigits * 8)
return -EMSGSIZE;
_ecc_native2be(buf, (uint64_t *) c->c, c->curve->ndigits);
return c->curve->ndigits * 8;
}
LIB_EXPORT void l_ecc_scalar_free(struct l_ecc_scalar *c)
{
if (unlikely(!c))
return;
explicit_bzero(c->c, c->curve->ndigits * 8);
l_free(c);
}
LIB_EXPORT bool l_ecc_scalar_add(struct l_ecc_scalar *ret,
const struct l_ecc_scalar *a,
const struct l_ecc_scalar *b,
const struct l_ecc_scalar *mod)
{
if (unlikely(!ret || !a || !b || !mod))
return false;
_vli_mod_add(ret->c, a->c, b->c, mod->c, a->curve->ndigits);
return true;
}
LIB_EXPORT bool l_ecc_point_multiply(struct l_ecc_point *ret,
const struct l_ecc_scalar *scalar,
const struct l_ecc_point *point)
{
if (unlikely(!ret || !scalar || !point))
return false;
_ecc_point_mult(ret, point, scalar->c, NULL, scalar->curve->p);
return true;
}
LIB_EXPORT bool l_ecc_point_multiply_g(struct l_ecc_point *ret,
const struct l_ecc_scalar *scalar)
{
if (unlikely(!ret || !scalar))
return false;
_ecc_point_mult(ret, &scalar->curve->g, scalar->c, NULL,
scalar->curve->p);
return true;
}
LIB_EXPORT bool l_ecc_point_add(struct l_ecc_point *ret,
const struct l_ecc_point *a,
const struct l_ecc_point *b)
{
if (unlikely(!ret || !a || !b))
return false;
_ecc_point_add(ret, a, b, a->curve->p);
return true;
}
LIB_EXPORT bool l_ecc_point_inverse(struct l_ecc_point *p)
{
if (unlikely(!p))
return false;
_vli_mod_sub(p->y, p->curve->p, p->y, p->curve->p, p->curve->ndigits);
return true;
}
LIB_EXPORT bool l_ecc_scalar_multiply(struct l_ecc_scalar *ret,
const struct l_ecc_scalar *a,
const struct l_ecc_scalar *b)
{
if (unlikely(!ret || !a || !b))
return false;
_vli_mod_mult_fast(ret->c, a->c, b->c, a->curve->p, a->curve->ndigits);
return true;
}
LIB_EXPORT int l_ecc_scalar_legendre(struct l_ecc_scalar *value)
{
if (unlikely(!value))
return -1;
return _vli_legendre(value->c, value->curve->p, value->curve->ndigits);
}
LIB_EXPORT bool l_ecc_scalar_sum_x(struct l_ecc_scalar *ret,
const struct l_ecc_scalar *x)
{
if (unlikely(!ret || !x))
return false;
ecc_compute_y_sqr(x->curve, ret->c, x->c);
return true;
}
LIB_EXPORT bool l_ecc_scalars_are_equal(const struct l_ecc_scalar *a,
const struct l_ecc_scalar *b)
{
if (unlikely(!a || !b))
return false;
return (memcmp(a->c, b->c, a->curve->ndigits * 8) == 0);
}
LIB_EXPORT bool l_ecc_points_are_equal(const struct l_ecc_point *a,
const struct l_ecc_point *b)
{
if (unlikely(!a || !b))
return false;
return ((memcmp(a->x, b->x, a->curve->ndigits * 8) == 0) &&
(memcmp(a->y, b->y, a->curve->ndigits * 8) == 0));
}
LIB_EXPORT bool l_ecc_point_is_infinity(const struct l_ecc_point *p)
{
return _ecc_point_is_zero(p);
}
|