NVDIMM Device and Persistent Memory development
 help / color / mirror / Atom feed
From: "Huang, Ying" <ying.huang@intel.com>
To: Alistair Popple <apopple@nvidia.com>
Cc: Andrew Morton <akpm@linux-foundation.org>,  <linux-mm@kvack.org>,
	<linux-kernel@vger.kernel.org>,  <linux-cxl@vger.kernel.org>,
	<nvdimm@lists.linux.dev>,  <linux-acpi@vger.kernel.org>,
	 "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>,
	 Wei Xu <weixugc@google.com>,
	 Dan Williams <dan.j.williams@intel.com>,
	 Dave Hansen <dave.hansen@intel.com>,
	"Davidlohr Bueso" <dave@stgolabs.net>,
	 Johannes Weiner <hannes@cmpxchg.org>,
	 "Jonathan Cameron" <Jonathan.Cameron@huawei.com>,
	Michal Hocko <mhocko@kernel.org>,  Yang Shi <shy828301@gmail.com>,
	Rafael J Wysocki <rafael.j.wysocki@intel.com>
Subject: Re: [PATCH RESEND 3/4] acpi, hmat: calculate abstract distance with HMAT
Date: Tue, 22 Aug 2023 07:28:49 +0800	[thread overview]
Message-ID: <87edjwc6vi.fsf@yhuang6-desk2.ccr.corp.intel.com> (raw)
In-Reply-To: <878ra4wqz0.fsf@nvdebian.thelocal> (Alistair Popple's message of "Mon, 21 Aug 2023 21:53:13 +1000")

Alistair Popple <apopple@nvidia.com> writes:

> "Huang, Ying" <ying.huang@intel.com> writes:
>
>> Alistair Popple <apopple@nvidia.com> writes:
>>
>>> Huang Ying <ying.huang@intel.com> writes:
>>>
>>>> A memory tiering abstract distance calculation algorithm based on ACPI
>>>> HMAT is implemented.  The basic idea is as follows.
>>>>
>>>> The performance attributes of system default DRAM nodes are recorded
>>>> as the base line.  Whose abstract distance is MEMTIER_ADISTANCE_DRAM.
>>>> Then, the ratio of the abstract distance of a memory node (target) to
>>>> MEMTIER_ADISTANCE_DRAM is scaled based on the ratio of the performance
>>>> attributes of the node to that of the default DRAM nodes.
>>>
>>> The problem I encountered here with the calculations is that HBM memory
>>> ended up in a lower-tiered node which isn't what I wanted (at least when
>>> that HBM is attached to a GPU say).
>>
>> I have tested the series on a server machine with HBM (pure HBM, not
>> attached to a GPU).  Where, HBM is placed in a higher tier than DRAM.
>
> Good to know.
>
>>> I suspect this is because the calculations are based on the CPU
>>> point-of-view (access1) which still sees lower bandwidth to remote HBM
>>> than local DRAM, even though the remote GPU has higher bandwidth access
>>> to that memory. Perhaps we need to be considering access0 as well?
>>> Ie. HBM directly attached to a generic initiator should be in a higher
>>> tier regardless of CPU access characteristics?
>>
>> What's your requirements for memory tiers on the machine?  I guess you
>> want to put GPU attache HBM in a higher tier and put DRAM in a lower
>> tier.  So, cold HBM pages can be demoted to DRAM when there are memory
>> pressure on HBM?  This sounds reasonable from GPU point of view.
>
> Yes, that is what I would like to implement.
>
>> The above requirements may be satisfied via calculating abstract
>> distance based on access0 (or combined with access1).  But I suspect
>> this will be a general solution.  I guess that any memory devices that
>> are used mainly by the memory initiators other than CPUs want to put
>> themselves in a higher memory tier than DRAM, regardless of its
>> access0.
>
> Right. I'm still figuring out how ACPI HMAT fits together but that
> sounds reasonable.
>
>> One solution is to put GPU HBM in the highest memory tier (with smallest
>> abstract distance) always in GPU device driver regardless its HMAT
>> performance attributes.  Is it possible?
>
> It's certainly possible and easy enough to do, although I think it would
> be good to provide upper and lower bounds for HMAT derived adistances to
> make that easier. It does make me wonder what the point of HMAT is if we
> have to ignore it in some scenarios though. But perhaps I need to dig
> deeper into the GPU values to figure out how it can be applied correctly
> there.

In the original design (page 11 of [1]),

[1] https://lpc.events/event/16/contributions/1209/attachments/1042/1995/Live%20In%20a%20World%20With%20Multiple%20Memory%20Types.pdf

the default memory tier hierarchy is based on the performance from CPU
point of view.  Then the abstract distance of a memory type (e.g., GPU
HBM) can be adjusted via a sysfs knob
(<memory_type>/abstract_distance_offset) based on the requirements of
GPU.

That's another possible solution.

--
Best Regards,
Huang, Ying


  reply	other threads:[~2023-08-21 23:30 UTC|newest]

Thread overview: 41+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2023-07-21  1:29 [PATCH RESEND 0/4] memory tiering: calculate abstract distance based on ACPI HMAT Huang Ying
2023-07-21  1:29 ` [PATCH RESEND 1/4] memory tiering: add abstract distance calculation algorithms management Huang Ying
2023-07-25  2:13   ` Alistair Popple
2023-07-25  3:14     ` Huang, Ying
2023-07-25  8:26       ` Alistair Popple
2023-07-26  7:33         ` Huang, Ying
2023-07-27  3:42           ` Alistair Popple
2023-07-27  4:02             ` Huang, Ying
2023-07-27  4:07               ` Alistair Popple
2023-07-27  5:41                 ` Huang, Ying
2023-07-28  1:20                   ` Alistair Popple
2023-08-11  3:51                     ` Huang, Ying
2023-08-21 11:26                       ` Alistair Popple
2023-08-21 22:50                         ` Huang, Ying
2023-08-21 23:52                           ` Alistair Popple
2023-08-22  0:58                             ` Huang, Ying
2023-08-22  7:11                               ` Alistair Popple
2023-08-23  5:56                                 ` Huang, Ying
2023-08-25  5:41                                   ` Alistair Popple
2023-07-21  1:29 ` [PATCH RESEND 2/4] acpi, hmat: refactor hmat_register_target_initiators() Huang Ying
2023-07-25  2:44   ` Alistair Popple
2023-08-07 16:55   ` Jonathan Cameron
2023-08-11  1:13     ` Huang, Ying
2023-07-21  1:29 ` [PATCH RESEND 3/4] acpi, hmat: calculate abstract distance with HMAT Huang Ying
2023-07-25  2:45   ` Alistair Popple
2023-07-25  6:47     ` Huang, Ying
2023-08-21 11:53       ` Alistair Popple
2023-08-21 23:28         ` Huang, Ying [this message]
2023-07-21  1:29 ` [PATCH RESEND 4/4] dax, kmem: calculate abstract distance with general interface Huang Ying
2023-07-25  3:11   ` Alistair Popple
2023-07-25  7:02     ` Huang, Ying
2023-08-21 12:03       ` Alistair Popple
2023-08-21 23:33         ` Huang, Ying
2023-08-22  7:36           ` Alistair Popple
2023-08-23  2:13             ` Huang, Ying
2023-08-25  6:00               ` Alistair Popple
2023-07-21  4:15 ` [PATCH RESEND 0/4] memory tiering: calculate abstract distance based on ACPI HMAT Alistair Popple
2023-07-24 17:58   ` Andrew Morton
2023-08-01  2:35     ` Bharata B Rao
2023-08-11  6:26       ` Huang, Ying
2023-08-11  7:49         ` Bharata B Rao

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=87edjwc6vi.fsf@yhuang6-desk2.ccr.corp.intel.com \
    --to=ying.huang@intel.com \
    --cc=Jonathan.Cameron@huawei.com \
    --cc=akpm@linux-foundation.org \
    --cc=aneesh.kumar@linux.ibm.com \
    --cc=apopple@nvidia.com \
    --cc=dan.j.williams@intel.com \
    --cc=dave.hansen@intel.com \
    --cc=dave@stgolabs.net \
    --cc=hannes@cmpxchg.org \
    --cc=linux-acpi@vger.kernel.org \
    --cc=linux-cxl@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-mm@kvack.org \
    --cc=mhocko@kernel.org \
    --cc=nvdimm@lists.linux.dev \
    --cc=rafael.j.wysocki@intel.com \
    --cc=shy828301@gmail.com \
    --cc=weixugc@google.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).