about summary refs log tree commit homepage
path: root/ext/tdb/lookup3.c
blob: 23a908892be3468e09e5f1755050b685897b05bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#include "rbtdb.h"

/*
 * lookup3 implementation copied from tdb.git
 * (commit 3258cf3f11bf7c68a2e69e1808c4551cc899725a),
 * as that tdb distribution isn't commonly available yet (as of 2010.11.29)
 */
#ifndef HAVE_TDB_JENKINS_HASH

#ifndef WORDS_BIGENDIAN
# define HASH_LITTLE_ENDIAN 1
# define HASH_BIG_ENDIAN 0
#else
# define HASH_LITTLE_ENDIAN 0
# define HASH_BIG_ENDIAN 1
#endif

/*
-------------------------------------------------------------------------------
lookup3.c, by Bob Jenkins, May 2006, Public Domain.

These are functions for producing 32-bit hashes for hash table lookup.
hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
are externally useful functions.  Routines to test the hash are included
if SELF_TEST is defined.  You can use this free for any purpose.  It's in
the public domain.  It has no warranty.

You probably want to use hashlittle().  hashlittle() and hashbig()
hash byte arrays.  hashlittle() is is faster than hashbig() on
little-endian machines.  Intel and AMD are little-endian machines.
On second thought, you probably want hashlittle2(), which is identical to
hashlittle() except it returns two 32-bit hashes for the price of one.
You could implement hashbig2() if you wanted but I haven't bothered here.

If you want to find a hash of, say, exactly 7 integers, do
  a = i1;  b = i2;  c = i3;
  mix(a,b,c);
  a += i4; b += i5; c += i6;
  mix(a,b,c);
  a += i7;
  final(a,b,c);
then use c as the hash value.  If you have a variable length array of
4-byte integers to hash, use hash_word().  If you have a byte array (like
a character string), use hashlittle().  If you have several byte arrays, or
a mix of things, see the comments above hashlittle().

Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
then mix those integers.  This is fast (you can do a lot more thorough
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
*/

#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))

/*
-------------------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.

This is reversible, so any information in (a,b,c) before mix() is
still in (a,b,c) after mix().

If four pairs of (a,b,c) inputs are run through mix(), or through
mix() in reverse, there are at least 32 bits of the output that
are sometimes the same for one pair and different for another pair.
This was tested for:
* pairs that differed by one bit, by two bits, in any combination
  of top bits of (a,b,c), or in any combination of bottom bits of
  (a,b,c).
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
  is commonly produced by subtraction) look like a single 1-bit
  difference.
* the base values were pseudorandom, all zero but one bit set, or
  all zero plus a counter that starts at zero.

Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
satisfy this are
    4  6  8 16 19  4
    9 15  3 18 27 15
   14  9  3  7 17  3
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
for "differ" defined as + with a one-bit base and a two-bit delta.  I
used http://burtleburtle.net/bob/hash/avalanche.html to choose
the operations, constants, and arrangements of the variables.

This does not achieve avalanche.  There are input bits of (a,b,c)
that fail to affect some output bits of (a,b,c), especially of a.  The
most thoroughly mixed value is c, but it doesn't really even achieve
avalanche in c.

This allows some parallelism.  Read-after-writes are good at doubling
the number of bits affected, so the goal of mixing pulls in the opposite
direction as the goal of parallelism.  I did what I could.  Rotates
seem to cost as much as shifts on every machine I could lay my hands
on, and rotates are much kinder to the top and bottom bits, so I used
rotates.
-------------------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
  a -= c;  a ^= rot(c, 4);  c += b; \
  b -= a;  b ^= rot(a, 6);  a += c; \
  c -= b;  c ^= rot(b, 8);  b += a; \
  a -= c;  a ^= rot(c,16);  c += b; \
  b -= a;  b ^= rot(a,19);  a += c; \
  c -= b;  c ^= rot(b, 4);  b += a; \
}

/*
-------------------------------------------------------------------------------
final -- final mixing of 3 32-bit values (a,b,c) into c

Pairs of (a,b,c) values differing in only a few bits will usually
produce values of c that look totally different.  This was tested for
* pairs that differed by one bit, by two bits, in any combination
  of top bits of (a,b,c), or in any combination of bottom bits of
  (a,b,c).
* "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
  the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
  is commonly produced by subtraction) look like a single 1-bit
  difference.
* the base values were pseudorandom, all zero but one bit set, or
  all zero plus a counter that starts at zero.

These constants passed:
 14 11 25 16 4 14 24
 12 14 25 16 4 14 24
and these came close:
  4  8 15 26 3 22 24
 10  8 15 26 3 22 24
 11  8 15 26 3 22 24
-------------------------------------------------------------------------------
*/
#define final(a,b,c) \
{ \
  c ^= b; c -= rot(b,14); \
  a ^= c; a -= rot(c,11); \
  b ^= a; b -= rot(a,25); \
  c ^= b; c -= rot(b,16); \
  a ^= c; a -= rot(c,4);  \
  b ^= a; b -= rot(a,14); \
  c ^= b; c -= rot(b,24); \
}

/*
-------------------------------------------------------------------------------
hashlittle() -- hash a variable-length key into a 32-bit value
  k       : the key (the unaligned variable-length array of bytes)
  length  : the length of the key, counting by bytes
  val2    : IN: can be any 4-byte value OUT: second 32 bit hash.
Returns a 32-bit value.  Every bit of the key affects every bit of
the return value.  Two keys differing by one or two bits will have
totally different hash values.  Note that the return value is better
mixed than val2, so use that first.

The best hash table sizes are powers of 2.  There is no need to do
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
use a bitmask.  For example, if you need only 10 bits, do
  h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.

If you are hashing n strings (uint8_t **)k, do it like this:
  for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);

By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
code any way you wish, private, educational, or commercial.  It's free.

Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable.  Do NOT use for cryptographic purposes.
-------------------------------------------------------------------------------
*/

static uint32_t hashlittle(const void *key, size_t length)
{
	uint32_t a, b, c;	/* internal state */
	union {
		const void *ptr;
		size_t i;
	} u;			/* needed for Mac Powerbook G4 */

	/* Set up the internal state */
	a = b = c = 0xdeadbeef + ((uint32_t) length);

	u.ptr = key;
	if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
		const uint32_t *k = (const uint32_t *)key;	/* read 32-bit chunks */
#ifdef VALGRIND
		const uint8_t *k8;
#endif

    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
		while (length > 12) {
			a += k[0];
			b += k[1];
			c += k[2];
			mix(a, b, c);
			length -= 12;
			k += 3;
		}

    /*----------------------------- handle the last (probably partial) block */
		/*
		 * "k[2]&0xffffff" actually reads beyond the end of the string, but
		 * then masks off the part it's not allowed to read.  Because the
		 * string is aligned, the masked-off tail is in the same word as the
		 * rest of the string.  Every machine with memory protection I've seen
		 * does it on word boundaries, so is OK with this.  But VALGRIND will
		 * still catch it and complain.  The masking trick does make the hash
		 * noticably faster for short strings (like English words).
		 */
#ifndef VALGRIND

		switch (length) {
		case 12:
			c += k[2];
			b += k[1];
			a += k[0];
			break;
		case 11:
			c += k[2] & 0xffffff;
			b += k[1];
			a += k[0];
			break;
		case 10:
			c += k[2] & 0xffff;
			b += k[1];
			a += k[0];
			break;
		case 9:
			c += k[2] & 0xff;
			b += k[1];
			a += k[0];
			break;
		case 8:
			b += k[1];
			a += k[0];
			break;
		case 7:
			b += k[1] & 0xffffff;
			a += k[0];
			break;
		case 6:
			b += k[1] & 0xffff;
			a += k[0];
			break;
		case 5:
			b += k[1] & 0xff;
			a += k[0];
			break;
		case 4:
			a += k[0];
			break;
		case 3:
			a += k[0] & 0xffffff;
			break;
		case 2:
			a += k[0] & 0xffff;
			break;
		case 1:
			a += k[0] & 0xff;
			break;
		case 0:
			return c;	/* zero length strings require no mixing */
		}

#else				/* make valgrind happy */

		k8 = (const uint8_t *)k;
		switch (length) {
		case 12:
			c += k[2];
			b += k[1];
			a += k[0];
			break;
		case 11:
			c += ((uint32_t) k8[10]) << 16;	/* fall through */
		case 10:
			c += ((uint32_t) k8[9]) << 8;	/* fall through */
		case 9:
			c += k8[8];	/* fall through */
		case 8:
			b += k[1];
			a += k[0];
			break;
		case 7:
			b += ((uint32_t) k8[6]) << 16;	/* fall through */
		case 6:
			b += ((uint32_t) k8[5]) << 8;	/* fall through */
		case 5:
			b += k8[4];	/* fall through */
		case 4:
			a += k[0];
			break;
		case 3:
			a += ((uint32_t) k8[2]) << 16;	/* fall through */
		case 2:
			a += ((uint32_t) k8[1]) << 8;	/* fall through */
		case 1:
			a += k8[0];
			break;
		case 0:
			return c;
		}

#endif				/* !valgrind */

	} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
		const uint16_t *k = (const uint16_t *)key;	/* read 16-bit chunks */
		const uint8_t *k8;

    /*--------------- all but last block: aligned reads and different mixing */
		while (length > 12) {
			a += k[0] + (((uint32_t) k[1]) << 16);
			b += k[2] + (((uint32_t) k[3]) << 16);
			c += k[4] + (((uint32_t) k[5]) << 16);
			mix(a, b, c);
			length -= 12;
			k += 6;
		}

    /*----------------------------- handle the last (probably partial) block */
		k8 = (const uint8_t *)k;
		switch (length) {
		case 12:
			c += k[4] + (((uint32_t) k[5]) << 16);
			b += k[2] + (((uint32_t) k[3]) << 16);
			a += k[0] + (((uint32_t) k[1]) << 16);
			break;
		case 11:
			c += ((uint32_t) k8[10]) << 16;	/* fall through */
		case 10:
			c += k[4];
			b += k[2] + (((uint32_t) k[3]) << 16);
			a += k[0] + (((uint32_t) k[1]) << 16);
			break;
		case 9:
			c += k8[8];	/* fall through */
		case 8:
			b += k[2] + (((uint32_t) k[3]) << 16);
			a += k[0] + (((uint32_t) k[1]) << 16);
			break;
		case 7:
			b += ((uint32_t) k8[6]) << 16;	/* fall through */
		case 6:
			b += k[2];
			a += k[0] + (((uint32_t) k[1]) << 16);
			break;
		case 5:
			b += k8[4];	/* fall through */
		case 4:
			a += k[0] + (((uint32_t) k[1]) << 16);
			break;
		case 3:
			a += ((uint32_t) k8[2]) << 16;	/* fall through */
		case 2:
			a += k[0];
			break;
		case 1:
			a += k8[0];
			break;
		case 0:
			return c;	/* zero length requires no mixing */
		}

	} else {		/* need to read the key one byte at a time */
		const uint8_t *k = (const uint8_t *)key;

    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
		while (length > 12) {
			a += k[0];
			a += ((uint32_t) k[1]) << 8;
			a += ((uint32_t) k[2]) << 16;
			a += ((uint32_t) k[3]) << 24;
			b += k[4];
			b += ((uint32_t) k[5]) << 8;
			b += ((uint32_t) k[6]) << 16;
			b += ((uint32_t) k[7]) << 24;
			c += k[8];
			c += ((uint32_t) k[9]) << 8;
			c += ((uint32_t) k[10]) << 16;
			c += ((uint32_t) k[11]) << 24;
			mix(a, b, c);
			length -= 12;
			k += 12;
		}

    /*-------------------------------- last block: affect all 32 bits of (c) */
		switch (length) {	/* all the case statements fall through */
		case 12:
			c += ((uint32_t) k[11]) << 24;
		case 11:
			c += ((uint32_t) k[10]) << 16;
		case 10:
			c += ((uint32_t) k[9]) << 8;
		case 9:
			c += k[8];
		case 8:
			b += ((uint32_t) k[7]) << 24;
		case 7:
			b += ((uint32_t) k[6]) << 16;
		case 6:
			b += ((uint32_t) k[5]) << 8;
		case 5:
			b += k[4];
		case 4:
			a += ((uint32_t) k[3]) << 24;
		case 3:
			a += ((uint32_t) k[2]) << 16;
		case 2:
			a += ((uint32_t) k[1]) << 8;
		case 1:
			a += k[0];
			break;
		case 0:
			return c;
		}
	}

	final(a, b, c);
	return c;
}

unsigned int rbtdb_jenkins_lookup3(TDB_DATA * key)
{
	return hashlittle(key->dptr, key->dsize);
}
#endif /* !HAVE_TDB_JENKINS_HASH */